Abstracts

Open Gromov-Witten invariants on toric manifolds SIU-CHEONG LAU

SIU-CHEONG LAU

(joint work with K.W. Chan, N.C. Leung, H.H. Tseng)

Let X be a compact toric manifold of complex dimension n and $q \in H^2(X, \mathbb{C})$ be a complexified Kähler class of X. When $-K_X$ is numerically effective, we extract the open Gromov-Witten invariants of X from its mirror map. This gives an open analogue of closed-string mirror symmetry discovered by Candelas-de la Ossa-Green-Parkes [1]. Namely, under mirror symmetry, the computation of open Gromov-Witten invariants is transformed to a PDE problem of solving Picard-Fuchs equations.

The mirror of (X,q) is defined to be a certain holomorphic function W_q on $(\mathbb{C}^{\times})^n$ called the superpotential¹. Closed-string mirror symmetry states that the deformation of W_q encodes Gromov-Witten invariants of X. More precisely, it states that there is an isomorphism

$$QH^*(X,q) \cong \operatorname{Jac}(W_q)$$

as Frobenius algebras, where $QH^*(X,q)$ denotes the small quantum cohomology ring of (X,q) and

$$\operatorname{Jac}(W_q) := \frac{\mathbb{C}[z_1^{\pm 1}, \dots, z_n^{\pm 1}]}{\left\langle z_1 \frac{\partial W_q}{\partial z_1}, \dots, z_n \frac{\partial W_q}{\partial z_n} \right\rangle}$$

is the Jacobian ring of W_q .

Based on physical arguments, Hori-Vafa [6] gave a recipe to write down a Laurent polynomial W_q° from the fan configuration of X. It turns out that W_q° only records the 'leading order terms' and is not equal to W_q in general. The difference $W_q - W_q^{\circ}$ is called instanton corrections.

 $W_q - W_q^\circ$ is called instanton corrections. Traditionally, the instanton corrections are written down from the PDE approach. Namely, one writes down a Picard-Fuchs system using the fan configuration of X, and solves it explicitly for the 'mirror map' $\check{q}(q)$. Then define

$$W_q^{\mathrm{PF}} := W_{\check{q}(q)}^{\circ}.$$

When the anti-canonical line bundle $-K_X$ is numerically effective, W_q^{PF} fits into the mirror symmetry framework mentioned above, namely

$$QH^*(X,q) \cong \operatorname{Jac}(W_q^{\operatorname{PF}})$$

as Frobenius algebras [5, 7].

On the other hand, the instanton corrections are realized by Fukaya-Oh-Ohta-Ono [4] using open Gromov-Witten invariants as follows. Let $\mathbf{T} \subset X$ be a Lagrangian toric fiber and $\pi_2(X, \mathbf{T})$ be the set of homotopy classes of maps

¹More precisely W is a formal series over the Novikov field. Here we assume it is convergent in some neighborhood of q = 0, and thus defines a holomorphic function on $(\mathbb{C}^{\times})^n$.

 $(\Delta, \partial \Delta) \to (X, \mathbf{T})$, where Δ denotes the closed unit disk. For $\beta \in \pi_2(X, \mathbf{T})$, the moduli space $\mathcal{M}_1(\beta)$ of stable disks representing β and its virtual fundamental class $[\mathcal{M}_1(\beta)] \in H_n(\mathbf{T})$ are defined by use of Kuranishi structures. The one-pointed Gromov-Witten invariant associated to β is defined as

$$n_{\beta} := \int_{[\mathcal{M}_1(\beta)]} \operatorname{ev}^*[\operatorname{pt}]$$

where $[pt] \in H^n(\mathbf{T})$ is the point class and $ev : \mathcal{M}_1(\beta) \to \mathbf{T}$ is the evaluation map. Then

$$W_q^{\rm LF} := \sum_{\beta \in \pi_2(X, \mathbf{T})} n_\beta Z_\beta$$

gives another definition of the instanton-corrected superpotential, where Z_{β} is an explicitly written monomial for each β . Notice that the above formal sum involves infinitely many terms in general, and is well-defined over the Novikov field. Fukaya-Oh-Ohta-Ono [3] proved that

$$QH^*(X,q) \cong \operatorname{Jac}(W_q^{\operatorname{LF}})$$

as Frobenius algebras.

While W_q^{PF} and W_q^{LF} originates from totally different approaches, they lead to the same mirror symmetry statements. The following conjecture is made in a joint work with Chan, Leung and Tseng [2]:

Conjecture 1 ([2]). Let X be a toric manifold with $-K_X$ numerically effective, and let W^{PF} and W^{LF} be the superpotentials in the mirror as introduced above. Then

(1)
$$W^{PF} = W^{LF}$$

Conjecture 1 can be proved under the technical assumption that W^{LF} converges analytically (instead of just being a formal sum):

Theorem 2 ([2]). Let X be a toric manifold with $-K_X$ numerically effective, and let W^{PF} and W^{LF} be the superpotentials in the mirror as explained above. Then $W^{PF} = W^{LF}$

provided that each coefficient of W^{LF} converges in an open neighborhood around q = 0.

The above technical assumption on the convergence of W^{LF} is satisfied when $\dim X = 2$, or when X is of the form $\mathbb{P}(K_S \oplus \mathcal{O}_Y)$ for some toric Fano manifold Y.

The function W^{LF} is a generating function of open Gromov-Witten invariants n_{β} (and thus can be regarded as an object in the 'A-side'), whereas W^{PF} arises from solving Picard-Fuchs equations (and so is an object in the 'B-side'). Using this equality, the task of computing the open Gromov-Witten invariants is transformed to solving Picard-Fuchs equations which has been known to experts. Thus the above equality gives a mirror symmetry method to compute open Gromov-Witten invariants.

References

- P. Candelas, X. de la Ossa, P.S. Green, and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), no. 1, 21–74.
- [2] K.-W. Chan, S.-C. Lau, N.-C. Leung, and H.-H. Tseng, Open Gromov-Witten invariants and mirror maps for semi-Fano toric manifolds, preprint, arXiv:1112.0388.
- [3] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory and mirror symmetry on compact toric manifolds, preprint, arXiv:1009.1648.
- [4] _____, Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J. 151 (2010), no. 1, 23–174.
- [5] A. Givental, A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics (Kyoto, 1996), Progr. Math., vol. 160, Birkhäuser Boston, Boston, MA, 1998, pp. 141–175.
- $[6]\,$ K. Hori and C. Vafa, $\it Mirror\ symmetry,\ preprint,\ arXiv:hep-th/0002222.$
- [7] B. Lian, K. Liu, and S.-T. Yau, Mirror principle. III, Asian J. Math. 3 (1999), no. 4, 771–800.

Reporter: Lars Kastner